

STUDENT

PORTFOLIO

Name: ANAS AHMED ATHER

Register Number:

RA2011031010006

Mail ID:

aa0094@srmist.edu.in

Department: CSE

Specialisation:

Information

Technology

Semester: V

Subject Title: 18CSC302J- Computer Network

Handled By: Ms.S.Thenmalar (102065)

mailto:aa0094@srmist.edu.in

INDEX

SLNO NAME OF EXPERIMENT

1.
Study of necessary header files with respect to socket programming

2. Study of Basic Functions of Socket Programming

3.

Simple TCP/IP Client Server Communication

4.
UDP Echo Client Server Communication

5.
Concurrent TCP/IP Day-Time Server

6.
Half Duplex Chat Using TCP/IP

7.
Full Duplex Chat Using TCP/IP

8.
Implementation of File Transfer Protocol

9. Remote Command Execution Using UDP

10.
ARP Implementation Using UDP

11.
Study of IPV6 Addressing & Subnetting

12.
Implementation of Network Address Translation

13. Implementation of VPN

14. Communication Using HDLC

15. Communication Using PPP

Ex.No:1 STUDY OF HEADER FILES WITH RESPECT TO SOCKET

PROGRAMMING
Date:

AIM:

To Study the header files with respect to Socket Programming

1. stdio.h:

Has standard input and output library providing simple and efficient buffered

stream IOinterface.(scanf, printf, gets, putc etc.)

2. unistd.h:

It is a POSIX standard for open system interface. [Portable Operating System

Interface]. (fork, pipe, read, write etc.)

3. string.h:

This header file is used to perform string manipulation operations on NULL

terminatedstrings.(strcpy,strcmp, strlen etc.)

4. stdlib.h:

This header file contains the utility functions such as string conversion

routines, memoryallocation routines, random number generator, etc. (abort, exit, rand,

atoi etc.)

5. sys/types.h:

Defines the data type of socket address structure in unsigned long.(clock_t, size_t,

dev_t etc.)

6. sys/socket.h:

The socket functions can be defined as taking pointers to the generic socket

address structure called sockaddr. (SO_REUSEADDR, SO_ERROR,

SO_ACCEPTCONN etc.)

7. netinet/in.h:

Defines the IPv4 socket address structure commonly called Internet socket

address structure called sockaddr_in. (IPPROTO_IP, IPPROTO_ICMP,

IPPROTO_TCP etc.)

8. netdb.h:

Defines the structure hostent for using the system call gethostbyname to get the network

host entry.(HOST_NOT_FOUND, NO_DATA, NO_RECOVERY etc.)

9. time.h:

Has structures and functions to get the system date and time and to perform time

manipulation functions. We use the function ctime(), that is defined in this header file

, to calculate the current dateand time.

10. sys/stat.h:

Contains the structure stat to test a descriptor to see if it is of a specified type. Also

it is used to display file or file system status.stat() updates any time related fields.when

copying from 1 file to another.

11. sys/ioctl.h:

Macros and defines used in specifying an ioctl request are located in this header

file. We use the function ioctl() that is defined in this header file. ioctl() function is used

to perform ARP cache operations.

12. pcap.h:

Has function definitions that are required for packet capturing. Some of the

functions are pcap_lookupdev(),pcap_open_live() and pcap_loop(). pcap_lookupdev()

is used to initialize the network device. The device to be sniffed is opened using the

pcap_open_live(). Pcap_loop() determines the number of packets to be sniffed.

13. net/if_arp.h:

Contains the definitions for Address Resolution Protocol. We use this to manipulate the ARP

request structure and its data members arp_pa,arp_dev and arp_ha. The arp_ha structure’s datamember

sa_data[] has the hardware address.

14. errno.h:

It sets an error number when an error and that error can be displayed using perror

function. It has symbolic error names. The error number is never set to zero by any

library function.

15. arpa/inet.h:

This is used to convert internet addresses between ASCII strings and network byte

ordered binaryvalues (values that are stored in socket address structures). It is used for

inet_aton, inet_addr,inet_ntoa functions

Result :

Thus the header files of Socket programs are studied

Ex.No:2 STUDY OF BASIC FUNCTIONS OF SOCKET PROGRAMMING

Date:

Aim :

To discuss some of the basic functions used for socket programming.

1. man socket

NAME:

Socket – create an endpoint for communication.

SYNOPSIS:

#include<sys/types.h>

#include<sys/socket.h>
int socket(int domain,int type,int protocol);

eg: sd=socket(AF_INET,SOCK_STREAM,0);

DESCRIPTION:

➢ Socket creates an endpoint for communication and returns a descriptor.

➢ The domain parameter specifies a common domain this selects the protocol
family whichwill be used for communication.

➢ These families are defined in <sys/socket.h>.

FORMAT:

NAME PURPOSE
PF_UNIX,PF_LOCAL Local Communication.
PF_INET IPV4 Internet Protocols.
PF_IPX IPX-Novell Protocols.
PF_APPLETALK Apple Talk.

TYPES:

➢ The socket has the indicated type, which specifies the communication

semantics.

1. SOCK_STREAM:

➢ Provides sequenced , reliable, two-way , connection based byte streams.
➢ An out-of-band data transmission mechanism, may be supported.

2. SOCK_DGRAM:

➢ Supports datagram (connectionless, unreliable messages of a fixed

maximum length).

3. SOCK_SEQPACKET:

➢ Provides a sequenced , reliable, two-way connection based data
transmission path fordatagrams of fixed maximum length.

4. SOCK_RAW:
➢ Provides raw network protocol access.

5. SOCK_RDM:
➢ Provides a reliable datagram layer that doesn’t guarantee ordering.

6. SOCK_PACKET:

➢ Obsolete and shouldn’t be used in new programs.

2. man connect:

NAME:

connect – initiate a connection on a socket.

SYNOPSIS:

#include<sys/types.h>

#include<sys/socket.h>

int connect(int sockfd,const (struct

sockaddr*)&serv_addr,socklen_t addrlen);eg:

cd=connect(sd,(struct sockaddr*)&servaddr,sizeof(servaddr));

DESCRIPTION:

➢ The file descriptor sockfd must refer to a socket.

➢ If the socket is of type SOCK_DGRAM then the serv_addr address is the

address to which datagrams are sent by default and the only addr from

which datagrams arereceived.

➢ If the socket is of type SOCK_STREAM or SOCK_SEQPACKET , this call
attempts tomake a connection to another socket.

RETURN VALUE:

ERRORS:

➢ If the connection or binding succeeds, zero is returned.

➢ On error , -1 is returned , and error number is set appropriately.

EBADF Not a valid Index.
EFAULT The socket structure address is outside the

user’saddress space.
ENOTSOCK Not associated with a socket.
EISCONN Socket is already connected.
ECONNREFUSED No one listening on the remote address.

3. man accept

NAME:

accept/reject job is sent to a destination.

SYNOPSIS:

accept destination(s)

reject[-t] [-h server] [-r reason] destination(s)

eg: ad=accept(sd,(struct sockaddr*)&cliaddr,&clilen);

DESCRIPTION:

➢ accept instructs the printing system to accept print jobs to the specified
destination.

➢ The –r option sets the reason for rejecting print jobs.

➢ The –e option forces encryption when connecting to the server.

4. man send

NAME:

send, sendto, sendmsg - send a message from a socket.

SYNOPSIS:

#include<sys/types.h>

#include<sys/socket.h>

ssize_t send(int s, const void *buf, size_t len, int flags);

ssize_t sendto(int s, const void *buf, size_t len, int flags, const struct

sock_addr*to, socklen_t tolen);ssize_t sendmsg(int s, const struct msghdr *msg,

int flags);

DESCRIPTION:

➢ The system calls send, sendto and sendmsg are used to transmit a
message to anothersocket.

➢ The send call may be used only when the socket is in a connected state.

➢ The only difference between send and write is the presence of flags.

➢ The parameter is the file descriptor of the sending socket.

5. man recv

NAME:

recv, recvfrom, recvmsg – receive a message from a socket.

SYNOPSIS:

#include<sys/types.

h>

#include<sys/socke

t.h>

ssize_t recv(int s, void *buf, size_t len, int flags);

ssize_t recvfrom(int s, void *buf, size_t len, int flags, struct sockaddr *from,

socklen_t* from len);ssize_t recvmsg(int s, struct msghdr *msg, int flags);

DESCRIPTION:

➢ The recvfrom and recvmsg calls are used to receive messages from a socket, and may
beused to recv data on a socket whether or not it is connection oriented.

➢ If from is not NULL, and the underlying protocol provides the src addr , this src addr
isfilled in.

➢ The recv call is normally used only on a connection socket and is identical to
recvfromwith a NULL from parameter.

6. man write

NAME:

write- send a message to another user.

SYNOPSIS:

write user[ttyname]

DESCRIPTION:

➢ write allows you to communicate with other users, by copying lines from

terminal to
………

➢ When you run the write and the user you are writing to get a

message of the form:Message from yourname @yourhost on

yourtty at hh:mm:…

➢ Any further lines you enter will be copied to the specified user’s terminal.

➢ If the other user wants to reply they must run write as well.

7. ifconfig

NAME:

ifconfig- configure a network interface.

SYNOPSIS:

ifconfig[interface]

ifconfig interface[aftype] options | address……

DESCRIPTION:

➢ ifconfig is used to configure the kernel resident network interfaces.

➢ It is used at boot time to setup interfaces as necessary.

➢ After that, it is usually only needed when debugging or when system tuning is
needed.

➢ If no arguments are given, ifconfig displays the status of the currently active
interfaces.

8. man bind

SYNOPSIS:

bind[-m keymap] [-lp sv psv]

9. man htons/ man

htonlNAME:

htonl, htons, ntohl, ntohs - convert values between host and network byte order.

SYNOPSIS:

#include<netinet/in.h>

uint32_t htonl(uint32_t

hostlong); uint16_t

htons(uint32_t

hostshort);uint32_t

ntohl(uint32_t

netlong); uint16_t

ntohs(uint16_t

netshort);

DESCRIPTION:

➢ The htonl() function converts the unsigned integer hostlong from host
byte order tonetwork byte order.

➢ The htons() converts the unsigned short integer hostshort from host byte
order to networkbyte order.

➢ The ntohl() converts the unsigned integer netlong from network byte order

to host byteorder.

10. man

gethostname

NAME:

gethostname, sethostname- get/set host name.

SYNOPSIS:

#include<unistd.h>

int gethostname(char *name,size_t len);

int sethostname(const char *name,size_t len);

DESCRIPTION:

➢ These functions are used to access or to change the host name of the current
processor.

➢ The gethostname() returns a NULL terminated hostname(set earlier by

sethostname()) inthe array name that has a length of len bytes.

➢ In case the NULL terminated then hostname does not fit ,no error is
returned, but thehostname is truncated.

➢ It is unspecified whether the truncated hostname will be NULL terminated.

11. man

gethostbyname

NAME:

gethostbyname, gethostbyaddr, sethostent, endhostent, herror, hstr – error – get

network host entry.

SYNOPSIS:

#include<netdb.

h> extern int

h_errno;
struct hostent *gethostbyname(const char

*name);#include<sys/socket.h>

struct hostent *gethostbyaddr(const char *addr)int len,

int type);struct hostent *gethostbyname2(const char
*name,int af);

DESCRIPTION:

➢ The gethostbyname() returns a structure of type hostent for the given
hostname.

➢ Name->hostname or IPV4/IPV6 with dot notation.

➢ gethostbyaddr()- struct of type hostent / host address length

➢ Address types- AF_INET, AF_INET6.

➢ sethostent() – stay open is true(1).

➢ TCP socket connection should be open during queries.

➢ Server queries for UDP datagrams.
➢ endhostent()- ends the use of TCP connection.
➢ Members of hostent structure:

a) h_name
b) h_aliases

c) h_addrtype

d) h_length

e) h_addr-list

f) h_addr.

RESULT:

Thus the basic functions used for Socket Programming was studied successfully.

Ex.No:3 SIMPLE TCP/IP CLIENT SERVER COMMUNICATION

Date:

Aim:

There are two hosts, Client and Server. The Client accepts the message from the user and sends it to the

Server. The Server receives the message and prints it.

TECHNICAL OBJECTIVE:

To implement a simple TCP Client-Server application , where the Client on establishing a connection

with the Server, sends a string to the Server. The Server reads the String and prints it.

METHODOLOGY:

Server:
➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET, sin_addr to INADDR_ANY, sin_port to a dynamically
assigned port number.

➢ Bind the local host address to socket using the bind function.

➢ Listen on the socket for connection request from the client.

➢ Accept connection request from the client using accept function.

➢ Within an infinite loop, using the recv function receive message from the client and print it on
the console.

Client:

CODING:

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET.

➢ Get the server IP address and port number from the console.

➢ Using gethostbyname function assign it to a hostent structure, and assign it to sin_addr of the
server address structure.

➢ Request a connection from the server using the connect function.

➢ Within an infinite loop, read message from the console and send the message to the server using
the send function.

Server: tcpserver.c

#include<sys/types.h>

#include<sys/socket.h>

#include<netinet/in.h>

#include<netdb.h>

#include<arpa/inet.h>

#include<string.h>

#include<string.h>

#include<stdio.h>

int main(int asrgc,char*argv[])

{

int bd,sd,ad;

char buff[1024];

struct sockaddr_in cliaddr,servaddr;

socklen_t clilen;

clilen=sizeof(cliaddr);

bzero(&servaddr,sizeof(servaddr));

/*Socket address structure*/

servaddr.sin_family=AF_INET;

servaddr.sin_addr.s_addr=htonl(INADDR_ANY);

servaddr.sin_port=htons(1999);

/*TCP socket is created, an Internet socket address structure is filled with wildcard address &

server’s well known port*/

sd=socket(AF_INET,SOCK_STREAM,0);

/*Bind function assigns a local protocol address to the socket*/

bd=bind(sd,(struct sockaddr*)&servaddr,sizeof(servaddr));

/*Listen function specifies the maximum number of connections that kernel should queue for

this socket*/

listen(sd,5);

printf("Server is running….\n");

/*The server to return the next completed connection from the front of the

completed connection Queue calls it*/

ad=accept(sd,(struct sockaddr*)&cliaddr,&clilen);

while(1)

{

bzero(&buff,sizeof(buff));

/*Receiving the request message from the client*/

recv(ad,buff,sizeof(buff),0);

printf("Message received is %s\n",buff);
}

}

Client: tcpclient.c

#include<stdio.h>

#include<string.h>

#include<sys/socket.h>

#include<sys/types.h>

#include<unistd.h>

#include<netinet/in.h>

#include<netdb.h>

#include<arpa/inet.h>

int main(int argc,char * argv[])

{

int cd,sd,ad;

char buff[1024];

struct sockaddr_in cliaddr,servaddr;

struct hostent *h;

/*This function looks up a hostname and it returns a pointer to a hostent

structure that contains all the IPV4 address*/

h=gethostbyname(argv[1]);

bzero(&servaddr,sizeof(servaddr));

/*Socket address structure*/

servaddr.sin_family=AF_INET;

memcpy((char *)&servaddr.sin_addr.s_addr,h->h_addr_list[0],h->h_length);

servaddr.sin_port = htons(1999);

/*Creating a socket, assigning IP address and port number for that socket*/

sd = socket(AF_INET,SOCK_STREAM,0);

/*Connect establishes connection with the server using server IP address*/

cd=connect(sd,(struct sockaddr*)&servaddr,sizeof(servaddr));

while(1)

{
printf("Enter the message: \n");

/*Reads the message from standard input*/

fgets(buff,100,stdin);

/*Send function is used on client side to send data given by user on client

side to the server*/

send(sd,buff,sizeof(buff)+1,0);

printf("\n Data Sent ");

//recv(sd,buff,strlen(buff)+1,0);

printf("%s",buff);
}

}

OUTPUT :

Client Output:

Server Output:

Execution Procedure when we receive Segmentation Fault:

RESULT: Hence, the TPC/IP server client experiment is studied and performed.

Ex.No:3 UDP ECHO CLIENT SERVER COMMUNICATION

Date:

Aim:

There are two hosts, Client and Server. The Client accepts the message from the user and sends it to the

Server. The Server receives the message, prints it and echoes the message back to the Client.

TECHNICAL OBJECTIVE:

To implement an UDP Echo Client-Server application , where the Client on establishing a connection

with the Server, sends a string to the Server. The Server reads the String, prints it and echoes it back to the

Client.

METHODOLOGY:

Server:

Client:

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_DGRAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET, sin_addr to INADDR_ANY, sin_port to SERVER_PORT,
a macro defined port number.

➢ Bind the local host address to socket using the bind function.

➢ Within an infinite loop, receive message from the client using recvfrom function, print it on the
console and send (echo) the message back to the client using sendto function.

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_DGRAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET.

➢ Get the server IP address from the console.

➢ Using gethostbyname function assign it to a hostent structure, and assign it to sin_addr of the
server address structure.

➢ Within an infinite loop, read message from the console and send the message to the server using
the sendto function.

➢ Receive the echo message using the recvfrom function and print it on the console.

CODING:

Server:

#include<sys/socket.h>

#include<stdio.h>

#include<unistd.h>

#include<string.h>

#include<netinet/in.h>

#include<netdb.h>

#include<arpa/inet.h>

#include<sys/types.h>
int main(int argc,char *argv[])

{
int sd;

char buff[1024];

struct sockaddr_in cliaddr,servaddr;

socklen_t clilen;

clilen=sizeof(cliaddr);

/*UDP socket is created, an Internet socket address structure is filled with wildcard

address & server’s well known port*/

sd=socket(AF_INET,SOCK_DGRAM,0);

if (sd<0)

{

}

perror ("Cannot open Socket");

exit(1);

bzero(&servaddr,sizeof(servaddr));

/*Socket address structure*/

servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(5669);

/*Bind function assigns a local protocol address to the socket*/

if(bind(sd,(struct sockaddr*)&servaddr,sizeof(servaddr))<0)

{

perror("error in binding the port");

exit(1);
}

printf("%s","Server is Running…\n");

while(1)

{

bzero(&buff,sizeof(buff));

/*Read the message from the client*/

if(recvfrom(sd,buff,sizeof(buff),0,(struct sockaddr*)&cliaddr,&clilen)<0)

{

perror("Cannot rec data");

exit(1);

}

printf("Message is received \n",buff);

/*Sendto function is used to echo the message from server to client side*/

if(sendto(sd,buff,sizeof(buff),0,(struct sockadddr*)&cliaddr,clilen)<0)

{

perror("Cannot send data to client");

exit(1);

}
printf("Send data to UDP Client: %s",buff);

}

cloSe(sd);

return 0;

}

Client:
#include<sys/types.h>

#include<sys/socket.h>

#include<stdio.h>

#include<unistd.h>

#include<string.h>

#include<netinet/in.h>

#include<netdb.h>

int main(int argc,char*argv[])

{
int sd;

char buff[1024];

struct sockaddr_in servaddr;

socklen_t len;

len=sizeof(servaddr);

/*UDP socket is created, an Internet socket address structure is filled with

wildcard address & server’s well known port*/
sd = socket(AF_INET,SOCK_DGRAM,0);

if(sd<0)

{

}

perror("Cannot open socket");

exit(1);

bzero(&servaddr,len);

/*Socket address structure*/

servaddr.sin_family=AF_INET;
servaddr.sin_addr.s_addr=htonl(INADDR_ANY);
servaddr.sin_port=htons(5669);

while(1)

{

printf("Enter Input data : \n");

bzero(buff,sizeof(buff));

/*Reads the message from standard input*/

fgets(buff,sizeof (buff),stdin);

/*sendto is used to transmit the request message to the server*/

if(sendto (sd,buff,sizeof (buff),0,(struct sockaddr*)&servaddr,len)<0)

{

perror("Cannot send data");

exit(1);

}

printf("Data sent to UDP Server:%s",buff);

bzero(buff,sizeof(buff));

/*Receiving the echoed message from server*/

if(recvfrom (sd,buff,sizeof(buff),0,(struct sockaddr*)&servaddr,&len)<0)

{

perror("Cannot receive data");

exit(1);

}

printf("Received Data from server: %s",buff);

}

close(sd);

return 0;

}

Sample Output:

Server :

Client :

Result :

Thus, the UDP ECHO client server communication is established by sending the message from the

client to the server and server prints it and echoes the message back to the client.

Ex.No:5 CONCURRENT TCP/IP DAY-TIME SERVER

Date:

Aim:

There are two hosts, Client and Server. The Client requests the concurrent server for the date and time.

The Server sends the date and time, which the Client accepts and prints.

TECHNICAL OBJECTIVE:

To implement a TCP/IP day time server (concurrent server) that handles multiple client requests. Once

the client establishes connection with the server, the server sends its day-time details to the client which the

client prints in its console.

METHODOLOGY:

TCP Server :

➢ Create Socket address structure.

➢ TCP/UDP socket is created, an Internet socket address structure is filled with wildcard address &

server's well known port.

➢ Bind function assigns a local protocol address to the socket.

➢ Listen function specifies the maximum number of connections that kernel should queue for this

socket.

➢ The server to return the next completed connection from the front of the completed connection Queue

calls it.

➢ Receiving the request message from the client.

TCP Client :

➢ This function looks up a hostname and it returns a pointer to a hostent structure that contains all

the IPV4 address.

➢ Create Socket address structure. Creating a socket, assigning IP address and port number for that

socket.

➢ Connect establishes connection with the server using server IP address.

➢ Reads the message from standard input.

➢ Send function is used on client side to send data given by user on client side to the server.

Server:

#include<netinet/in.h>

#include<sys/socket.h>

#include<stdio.h>

#include<string.h>

#include<time.h>

#include<stdlib.h>

int main()

{

struct sockaddr_in sa;

struct sockaddr_in cli;

int sockfd,conntfd;

int len,ch;

char str[100];

time_t tick;

sockfd=socket(AF_INET,SOCK_STREAM,0);

if(sockfd<0)

{

}

else

printf("error in socket\n");

exit(0);

printf("Socket opened");

bzero(&sa,sizeof(sa));

sa.sin_port=htons(5600);

sa.sin_addr.s_addr=htonl(0);

if(bind(sockfd,(struct sockaddr*)&sa,sizeof(sa))<0)

{

Client:

}

else

for(;;)

{

}

}

printf("Error in binding\n");

printf("Binded Successfully");

listen(sockfd,50);

len=sizeof(ch);

conntfd=accept(sockfd,(struct sockaddr*)&cli,&len);

printf("Accepted");

tick=time(NULL);

snprintf(str,sizeof(str),"%s",ctime(&tick));

printf("%s",str);write(conntfd,str,100);

#include <netinet/in.h>

#include <sys/socket.h>

#include <stdio.h>

#include <stdlib.h>

int main()

{

struct sockaddr_in sa,cli;

int n,sockfd;

int len;char buff[100];

sockfd=socket(AF_INET,SOCK_STREAM,0);

if(sockfd<0)

{

}

else

printf("\nError in Socket");

exit(0);

printf("\nSocket is Opened");

bzero(&sa,sizeof(sa));

sa.sin_family=AF_INET;

sa.sin_port=htons(5600);

if(connect(sockfd,(struct sockaddr*)&sa,sizeof(sa))<0)

{

}

else

printf("\nError in connection failed");

exit(0);

printf("\nconnected successfully");

if(n=read(sockfd,buff,sizeof(buff))<0)

{

}

else

{

}

}

printf("\nError in Reading");

exit(0);

printf("\nMessage Read %s",buff);

Sample Output:

Server Side :

Client Side :

Result :

Thus the concurrent daytime client- server communication is established by sending the request

message from the client to the concurrent server and the server sends its time to all the clients and displays it.

Ex.No:6 HALF DUPLEX CHAT USING TCP/IP

Date:

Aim :

There are two hosts, Client and Server. Both the Client and the Server exchange message i.e. they send

messages or receive message from the other. There is only a single way communication between them.

TECHNICAL OBJECTIVE:

To implement a half duplex application, where the Client establishes a connection with the Server. The

Client can send and the server well receive messages at the same time.

Server:

Client:

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET, sin_addr to INADDR_ANY, sin_port to dynamically
assigned port number.

➢ Bind the local host address to socket using the bind function.

➢ Listen on the socket for connection request from the client.

➢ Accept connection request from the Client using accept function.

➢ Fork the process to receive message from the client and print it on the console.

➢ Read message from the console and send it to the client.

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET.

➢ Get the server IP address and the Port number from the console.

➢ Using gethostbyname function assign it to a hostent structure, and assign it to sin_addr of the
server address structure.

➢ Request a connection from the server using the connect function.

➢ Fork the process to receive message from the server and print it on the console.

➢ Read message from the console and send it to the server.

Codes:

Server:

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <unistd.h>

#include "netdb.h"

#include "arpa/inet.h"

#define MAX 1000

#define BACKLOG 5

int main()

{

char serverMessage[MAX];

char clientMessage[MAX];

int socketDescriptor = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_inserverAddress;

serverAddress.sin_family = AF_INET;

serverAddress.sin_port = htons(5214);

serverAddress.sin_addr.s_addr = INADDR_ANY;

bind(socketDescriptor, (struct sockaddr*)&serverAddress, sizeof(serverAddress));

listen(socketDescriptor, BACKLOG);

int clientSocketDescriptor = accept(socketDescriptor, NULL, NULL);

while (1)

{

printf("\ntext message here .. :");

scanf("%s", serverMessage);

send(clientSocketDescriptor, serverMessage, sizeof(serverMessage) , 0);

recv(clientSocketDescriptor, &clientMessage, sizeof(clientMessage), 0) ;

printf("\nCLIENT: %s", clientMessage);

}

}

Client:

close(socketDescriptor);

return 0;

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

#include <sys/types.h>

#include <sys/socket.h>

include <netinet/in.h>

#include <unistd.h>

#include "netdb.h"

#include "arpa/inet.h"

#define h_addrh_addr_list[0]

#define PORT 5214

#define MAX 1000

int main(){

char clientResponse[MAX];

int socketDescriptor = socket(AF_INET, SOCK_STREAM, 0);

char hostname[MAX], ipaddress[MAX];

struct hostent *hostIP;

f(gethostname(hostname,sizeof(hostname))==0){
hostIP = gethostbyname(hostname);

}

else{

}

printf("ERROR:FCC4539 IP Address Not ");

struct sockaddr_inserverAddress;

serverAddress.sin_family = AF_INET;

serverAddress.sin_port = htons(PORT);

serverAddress.sin_addr.s_addr = INADDR_ANY;

connect(socketDescriptor, (struct sockaddr *)&serverAddress, sizeof(serverAddress));

printf("\nLocalhost: %s\n", inet_ntoa(*(struct in_addr*)hostIP->h_addr));

printf("Local Port: %d\n", PORT);

printf("Remote Host: %s\n", inet_ntoa(serverAddress.sin_addr));

while (1)

{

recv(socketDescriptor, serverResponse, sizeof(serverResponse), 0);

printf("\nSERVER : %s", serverResponse);

printf("\ntext message here... :");

scanf("%s", clientResponse);
send(socketDescriptor, clientResponse, sizeof(clientResponse), 0);

}

close(socketDescriptor);

return 0;

}

Sample Output:

Server:

Client:

Result :

Thus the chat application full duplex communication is established by sending the request from the

client to the server, server gets the message and gives response to the client and prints it.

Ex.No:7 FULL DUPLEX CHAT USING TCP/IP

Date:

Aim:

There are two hosts, Client and Server. Both the Client and the Server exchange message i.e. they send

messages to and receive message from the other. There is a two way communication between them.

TECHNICAL OBJECTIVE:

To implement a full duplex application, where the Client establishes a connection with the Server. The

Client and Server can send as well as receive messages at the same time. Both the Client and Server exchange

messages.

Algorithm :

Server:

Client:

Codes:

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET, sin_addr to INADDR_ANY, sin_port to dynamically
assigned port number.

➢ Bind the local host address to socket using the bind function.

➢ Listen on the socket for connection request from the client.

➢ Accept connection request from the Client using accept function.

➢ Fork the process to receive message from the client and print it on the console.

➢ Read message from the console and send it to the client.

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET.

➢ Get the server IP address and the Port number from the console.

➢ Using gethostbyname function assign it to a hostent structure, and assign it to sin_addr of
the server address structure.

➢ Request a connection from the server using the connect function.

➢ Fork the process to receive message from the server and print it on the console.

➢ Read message from the console and send it to the server.

Server:

#include<sys/types.h>

#include<sys/socket.h>

#include<stdio.h>

#include<unistd.h>

#include<netdb.h>

#include<arpa/inet.h>

#include<netinet/in.h>

#include<string.h>

int main(int argc,char *argv[])

{

int clientSocketDescriptor,socketDescriptor;

struct sockaddr_inserverAddress,clientAddress;

socklen_tclientLength;

char recvBuffer[8000],sendBuffer[8000];

pid_tcpid;

bzero(&serverAddress,sizeof(serverAddress));

/*Socket address structure*/

serverAddress.sin_family=AF_INET;

serverAddress.sin_addr.s_addr=htonl(INADDR_ANY);

serverAddress.sin_port=htons(9652);

/*TCP socket is created, an Internet socket address structure is filled with

wildcard address & server’s well known port*/

socketDescriptor=socket(AF_INET,SOCK_STREAM,0);

/*Bind function assigns a local protocol address to the socket*/

bind(socketDescriptor,(struct sockaddr*)&serverAddress,sizeof(serverAddress));

/*Listen function specifies the maximum number of connections that kernel should queue

for this socket*/

listen(socketDescriptor,5);

printf("%s\n","Server is running ...");

/*The server to return the next completed connection from the front of the

completed connection Queue calls it*/

clientSocketDescriptor=accept(socketDescriptor,(struct

sockaddr*)&clientAddress,&clientLength);

/*Fork system call is used to create a new process*/

cpid=fork();

if(cpid==0)

{

while(1)

{

}

}

else

{

bzero(&recvBuffer,sizeof(recvBuffer));

/*Receiving the request from client*/

recv(clientSocketDescriptor,recvBuffer,sizeof(recvBuffer),0);

printf("\nCLIENT : %s\n",recvBuffer);

while(1)

{

bzero(&sendBuffer,sizeof(sendBuffer));

printf("\nType a message here ... ");

/*Read the message from client*/

fgets(sendBuffer,80000,stdin);

/*Sends the message to client*/

send(clientSocketDescriptor,sendBuffer,strlen(sendBuffer)+1,0);

printf("\nMessage sent !\n");

}

}

Client:

return 0;

}

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

//headers for socket and related functions

#include <sys/types.h>

#include <sys/socket.h>

//for including structures which will store information needed

#include <netinet/in.h>

#include <unistd.h>

//for gethostbyname

#include "netdb.h"

#include "arpa/inet.h"

int main()

{

int socketDescriptor;

struct sockaddr_inserverAddress;

char sendBuffer[8000],recvBuffer[8000];

pid_tcpid;

bzero(&serverAddress,sizeof(serverAddress));

serverAddress.sin_family=AF_INET;

serverAddress.sin_addr.s_addr=inet_addr("127.0.0.1");

serverAddress.sin_port=htons(9652);

/*Creating a socket, assigning IP address and port number for that socket*/

socketDescriptor=socket(AF_INET,SOCK_STREAM,0);

/*Connect establishes connection with the server using server IP address*/

connect(socketDescriptor,(struct sockaddr*)&serverAddress,sizeof(serverAddress));

/*Fork is used to create a new process*/

cpid=fork();

if(cpid==0)

{

while(1)

{

bzero(&sendBuffer,sizeof(sendBuffer));

printf("\nType a message here ... ");

/*This function is used to read from server*/

fgets(sendBuffer,80000,stdin);

}

}

else

{

while(1)

{

/*Send the message to server*/

send(socketDescriptor,sendBuffer,strlen(sendBuffer)+1,0);

printf("\nMessage sent !\n");

bzero(&recvBuffer,sizeof(recvBuffer));

/*Receive the message from server*/

recv(socketDescriptor,recvBuffer,sizeof(recvBuffer),0);

printf("\nSERVER : %s\n",recvBuffer);

}

}

Output:

return 0;

}

Server:

Client:

Result:

Thus the chat application full duplex communication is established by sending the request from the
client to the server, server gets the message and gives response to the client and prints it.

Ex.No:8 IMPLEMENTATION OF FILE TRANSFER PROTOCOL

Date:

Aim :

There are two hosts, Client and Server. The Client sends the name of the file it needs from the Server and the

Server sends the contents of the file to the Client, where it is stored in a file.

TECHNICAL OBJECTIVE:

To implement FTP application, where the Client on establishing a connection with the Server

sends the name of the file it wishes to access remotely. The Server then sends the contents of the file to the

Client, where it is stored.

METHODOLOGY:

Server :

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET, sin_addr to INADDR_ANY, sin_port to dynamically assigned
port number.

➢ Bind the local host address to socket using the bind function.

➢ Listen on the socket for connection request from the client.

➢ Accept connection request from the Client using accept function.

➢ Within an infinite loop, receive the file from the client.

➢ Open the file, read the file contents to a buffer and send the buffer to the Client.

TCP Client :

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_STREAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin_family to AF_INET, sin_addr to INADDR_ANY, sin_port to dynamically assigned
port number.

➢ Bind the local host address to socket using the bind function.

➢ Listen on the socket for connection request from the client.

➢ Accept connection request from the Client using accept function.

➢ Within an infinite loop, send the name of the file to be viewed to the Server.

➢ Read the file contents, store it in a file and print it on the console.

Codes :

Server:

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

//headers for socket and related functions

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/stat.h>

//for including structures which will store information needed

#include <netinet/in.h>

#include <unistd.h>

//for gethostbyname

#include "netdb.h"

#include "arpa/inet.h"

// defining constants

#define PORT 6969

#define BACKLOG 5

int main()

{

}

}

Client:

int size;

int socketDescriptor = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in serverAddress, clientAddress;

socklen_t clientLength;

struct stat statVariable;

char buffer[100], file[1000];

FILE *filePointer;

bzero(&serverAddress, sizeof(serverAddress));

serverAddress.sin_family = AF_INET;

serverAddress.sin_addr.s_addr = htonl(INADDR_ANY);

serverAddress.sin_port = htons(PORT);

bind(socketDescriptor, (struct sockaddr *)&serverAddress, sizeof(serverAddress));

listen(socketDescriptor,BACKLOG);

printf("%s\n","Server is running ...");

int clientDescriptor = accept(socketDescriptor,(struct

sockaddr*)&clientAddress,&clientLength);

while(1){

bzero(buffer,sizeof(buffer));

bzero(file,sizeof(file));

recv(clientDescriptor,buffer,sizeof(buffer),0);

filePointer = fopen(buffer,"r");

stat(buffer,&statVariable);

size=statVariable.st_size;

fread(file,sizeof(file),1,filePointer);

send(clientDescriptor,file,sizeof(file),0);

return 0;

#include "stdio.h"

#include "stdlib.h"

#include "string.h"

//headers for socket and related functions

#include <sys/types.h>

#include <sys/socket.h>

#include <sys/stat.h>

//for including structures which will store information needed

#include <netinet/in.h>

#include <unistd.h>

//for gethostbyname

#include "netdb.h"

#include "arpa/inet.h"

// defining constants

#define PORT 6969

int main()

{

int serverDescriptor = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in serverAddress;

char buffer[100], file[1000];

bzero(&serverAddress, sizeof(serverAddress));

erverAddress.sin_family = AF_INET;

serverAddress.sin_addr.s_addr = inet_addr("127.0.0.1");

serverAddress.sin_port = htons(PORT);

connect(serverDescriptor,(struct sockaddr*)&serverAddress,sizeof(serverAddress));

while (1){

printf("File name : ");

scanf("%s",buffer);

send(serverDescriptor,buffer,strlen(buffer)+1,0);

printf("%s\n","File Output : ");

recv(serverDescriptor,&file,sizeof(file),0);

printf("%s",file);

}

return 0;

}

Output:

Server:

Client:

Result :

Thus the FTP client-server communication is established and data is transferred between the client

and server machines.

Ex.No:9 REMOTE COMMAND EXECUTION USING UDP

Date:

Aim:

There are two hosts, Client and Server. The Client sends a command to the Server, which executes the

command and sends the result back to the Client.

TECHNICAL OBJECTIVE:

Remote Command execution is implemented through this program using which Client is able to execute

commands at the Server. Here, the Client sends the command to the Server for remote execution. The Server

executes the command and the send result of the execution back to the Client.

METHODOLOGY:

Server:

Client:

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_DGRAM.

➢ Initialize server address to 0 using the bzero function.

➢ Assign the sin _family to AF_INET, sin_addr to INADDR_ANY, sin _port to

dynamicallyassigned port number.

➢ Bind the local host using the bind() system call.

➢ Within an infinite loop, receive the command to be executed from the client.

➢ Append text “> temp.txt" to the command.

➢ Execute the command using the “system()" system call.

➢ Send the result of execution to the Client using a file buffer.

➢ Include the necessary header files.

➢ Create a socket using socket function with family AF_INET, type as SOCK_DGRAM.

➢ Initialize server address to O using the bzero function.

➢ Assign the sin family to AF_INET.

➢ Get the server IP address and the Port number from the console.

➢ Using gethostbyname() function assign it to a hostent structure, and assign it to sin_addr of the

server address structure.

➢ Obtain the command to be executed in the server from the user.

➢ Send the command to the server.

➢ Receive the output from the server and print it on the console.

Codes:

Server:

#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <stdlib.h>

#include <netdb.h>

#include <netinet/in.h>

#include <string.h>

#include <sys/stat.h>

#include <arpa/inet.h>

#include <unistd.h>

#define MAX 1000

int main()

{

int serverDescriptor = socket(AF_INET, SOCK_DGRAM, 0);

int size;

char buffer[MAX], message[] = "Command Successfully executed !";

struct sockaddr_in clientAddress, serverAddress;

socklen_t clientLength = sizeof(clientAddress);

bzero(&serverAddress, sizeof(serverAddress));

serverAddress.sin_family = AF_INET;

serverAddress.sin_addr.s_addr = htonl(INADDR_ANY);

serverAddress.sin_port = htons(8079);

bind(serverDescriptor, (struct sockaddr *)&serverAddress, sizeof(serverAddress));

while (1)

{

bzero(buffer, sizeof(buffer));

recvfrom(serverDescriptor, buffer, sizeof(buffer), 0, (struct sockaddr *)&clientAddress,

&clientLength);

system(buffer);

printf("Command Executed ... %s ", buffer);

sendto(serverDescriptor, message, sizeof(message), 0, (struct sockaddr *)&clientAddress,

clientLength);

}

close(serverDescriptor);

return 0;

}

Client:
#include <sys/types.h>

#include <sys/socket.h>

#include <stdio.h>

#include <unistd.h>

#include <netdb.h>

#include <netinet/in.h>

#include <string.h>

#include <arpa/inet.h>

#define MAX 1000

int main()

{

int serverDescriptor = socket(AF_INET, SOCK_DGRAM, 0);

char buffer[MAX], message[MAX];

struct sockaddr_in cliaddr, serverAddress;

socklen_t serverLength = sizeof(serverAddress);

bzero(&serverAddress, sizeof(serverAddress));

serverAddress.sin_family = AF_INET;

serverAddress.sin_addr.s_addr = inet_addr("127.0.0.1");

serverAddress.sin_port = htons(8079);

bind(serverDescriptor, (struct sockaddr *)&serverAddress, sizeof(serverAddress));

while (1)

{

printf("\nCOMMAND FOR EXECUTION ... ");

fgets(buffer, sizeof(buffer), stdin);

sendto(serverDescriptor, buffer, sizeof(buffer), 0, (struct sockaddr *)&serverAddress,

serverLength);

printf("\nData Sent !");

recvfrom(serverDescriptor, message, sizeof(message), 0, (struct sockaddr

*)&serverAddress, &serverLength);

printf("UDP SERVER : %s", message);

}

return 0;

}

Output:

Server:

Client:

Result :

Thus the Remote Command Execution between the client and server is implemented.

Ex.No:10 ARP IMPLEMENTATION USING UDP

Date:

Aim :

There is a single host. The IP address of any Client in the network is given as input and the

corresponding hardware address is got as the output.

TECHNICAL OBJECTIVE:

Address Resolution Protocol (ARP) is implemented through this program. The IP address of any Client

is given as the input. The ARP cache is looked up for the corresponding hardware address. This is returned as

the output. Before compiling that Client is pinged.

METHODOLOGY:

➢ Start

➢ Declare the variables and structure for the socket

➢ Specify the family, protocol, IP address and port number

➢ Create a socket using socket() function

➢ Call memcpy() and strcpy functions

➢ Display the MAC address

➢ Stop.

Code:

#include<sys/types.h>

#include<sys/socket.h>

#include<net/if_arp.h>

#include<sys/ioctl.h>

#include<stdio.h>

#include<string.h>

#include<unistd.h>

#include<math.h>

#include<complex.h>

#include<arpa/inet.h>

#include<netinet/in.h>

#include<netinet/if_ether.h>

#include<net/ethernet.h>

#include<stdlib.h>

int main()

{

struct sockaddr_in sin={0};

struct arpreq myarp={{0}};

unsigned char *ptr;

int sd;

sin.sin_family=AF_INET;

printf("Enter IP address: ");

char ip[20];

scanf("%s", ip);

if(inet_pton(AF_INET,ip,&sin.sin_addr)==0)

{

printf("IP address Entered '%s' is not valid \n",ip);

exit(0);

}

memcpy(&myarp.arp_pa,&sin,sizeof(myarp.arp_pa));

strcpy(myarp.arp_dev,"echo");

d=socket(AF_INET,SOCK_DGRAM,0);

printf("\nSend ARP request\n");

if(ioctl(sd,SIOCGARP,&myarp)==1)

{

printf("No Entry in ARP cache for '%s'\n",ip);

exit(0);

}

Output:

ptr=&myarp.arp_pa.sa_data[0];

printf("Received ARP Reply\n");

printf("\nMAC Address for '%s' : ",ip);

printf("%p:%p:%p:%p:%p:%p\n",ptr,(ptr+1),(ptr+2),(ptr+3),(ptr+4),(ptr+5));

return 0;

}

Result :

Henceforth, Address Resolution Protocol (ARP) is implemented using UDP

Ex.No:11 STUDY OF IPV6 ADDRESSING & SUBNETTING

Date:

AIM:

To Study the IPV6 Addressing and Subnetting

What is IPv6:

As the number of internet devices—also known as the Internet of Things (IoT)—increases around the

world, more IP addresses are needed for these devices to communicate data. Consider smartphones,

smartwatches, refrigerators, washing machines, smart TVs, and other electronic devices that require an IP

address. All of these devices are now linked to the internet and have a unique IP address assigned to them. We'll

focus on IPv6, its characteristics, and why it'll be the Internet Protocol standard in this quick overview.

Before we go into the technicalities, there are a few things to know about IPv6:

1. IPv6 addresses are 128-bit (2128) and allow for 3.4 x 1038 unique IP addresses.

2. IPv6 is written in hexadecimal notation, with the colons separating eight groups of 16 bits, for a total

of 8 x 16 = 128, or bits. The following is an example of an IPv6 address:

➢ Syntax of IPv6 Addresses:

IPv4 addresses are represented in dotted-decimal format. The 32-bit address is divided along 8-bit

boundaries. Each set of 8 bits is converted to its decimal equivalent and separated by periods. In contrast, IPv6

addresses are 128 bits divided along 16-bit boundaries. Each 16-bit block is converted to a 4-digit hexadecimal

number and separated by colons. The resulting representation is called colon-hexadecimal.

➢ The Addressing Space:

The amount of memory dedicated to all potential addresses for a computational object, such as a device,

a file, a server, or a networked computer, is known as address space. A range of physical or virtual addresses

accessible to a processor or reserved for a process is referred to as address space. Each address defines an

entity's location as a unique identifier of single entities (unit of memory that can be addressed separately). Each

computer device and process is given address space on the computer, which is a piece of the processor's address

space. The address space of a processor is always constrained by the width of its address bus and registers. Flat

address space, in which addresses are expressed as continuously growing integers starting at zero, and

segmented address space, in which addresses are written as discrete segments enhanced by offsets, are the two

types of address space (values added to produce secondary addresses). Thunking is a procedure that allows

address space to be changed from one format to another in some systems.

In terms of IP address space, there has been concern that IPv4 (Internet Protocol Version 4) had not

anticipated the enormous growth of the Internet, and that its 32-bit address space would not be adequate. For

that reason, IPv6 has been developed with 128-bit address space.

Allocation of the IPv6 addressing space:

➢ Types of IPv6 Addresses:

Generally, IPv6 addresses is classified into 3. They are:

1. Unicast: This type is the address of a single interface. A packet forwarded to a unicast address is

delivered only to the interface identified by that address.

2. Anycast: This type is the address of a set of interfaces typically belonging to different nodes. A packet

forwarded to an anycast address is delivered to only one interface of the set (the nearest to the source

node, according to the routing metric).

3. Multicast: This type is the address of a set of interfaces that typically belong to different nodes. A

packet forwarded to a multicast address is delivered to all interfaces belonging to the set.

1. Unicast Addresses:

A unicast address identifies a single interface. When a network device sends a packet to a unicast address,

the packet goes only to the specific interface identified by that address. Unicast addresses support a global

address scope and two types of local address scopes.

A unicast address consists of n bits for the prefix, and 128 – n bits for the interface ID.

• Global unicast address—A unique IPv6 address assigned to a host interface. These addresses have a

global scope and essentially the same purposes as IPv4 public addresses. Global unicast addresses are

routable on the Internet.

• Link-local IPv6 address—An IPv6 address that allows communication between neighboring hosts that

reside on the same link. Link-local addresses have a local scope, and cannot be used outside the link.

They always have the prefix FE80::/10.

• Loopback IPv6 address—An IPv6 address used on a loopback interfaces. The IPv6 loopback address

is 0:0:0:0:0:0:0:1, which can be notated as ::1/128.
• Unspecified address—An IPv6 unspecified address is 0:0:0:0:0:0:0:0, which can be notated as ::/128.

1. Aggregatable Global Unicast Addresses:

Aggregate global unicast addresses are used for global communication. These addresses are similar in

function to IPv4 addresses under classless interdomain routing (CIDR). The following table shows their

format.

2. Geographic-Based Addresses:

Geography addresses are those determined by country of origin. This type of address is only available

in the IPv4 address category. The data address table includes a ‘scope’ and a ‘authority‘

3. Link Local Addresses:

A link-local address is a network address that is valid only for communications within the network

segment or the broadcast domain that the host is connected to. Link-local addresses are most often

assigned automatically with a process known as stateless address autoconfiguration or link-local

address autoconfiguration,[1] also known as automatic private IP addressing (APIPA) or auto-IP.

4. Site Local Addresses:

Site-local addresses are designed to be used for addressing inside of a site without the need for a global

prefix. A site-local address cannot be reached from another site. A site-local address is not automatically

assigned to a node. It must be assigned using automatic or manual configuration.

5. The Unspecified Address:

The address 0:0:0:0:0:0:0:0 is called the unspecified address. It will not be assigned to any node. It

indicates the absence of an address. One example of its use is in the Source Address field of any IPv6

packets sent by an initializing host before it has learned its own address.

6. The Loopback Address:

The IP address 127.0.0.1 is called a loopback address. Packets sent to this address never reach the

network but are looped through the network interface card only. This can be used for diagnostic

purposes to verify that the internal path through the TCP/IP protocols is working.

7. NSAP Addresses:

Short for Network Service Access Point, NSAP is an address consisting of up to 20 octets that identify

a computer or network connected to an ATM network. NSAP is defined in ISO/IEC 8348.

8. IPX Addresses:

Internetwork Packet Exchange (IPX) is the network layerprotocol in the IPX/SPXprotocol suite. IPX

is derived from Xerox Network Systems' IDP. It may act as a transport layer protocol as well.

2. Anycast Address:

An anycast address identifies a set of interfaces that typically belong to different nodes. Anycast addresses

are similar to multicast addresses, except that packets are sent only to one interface, not to all interfaces. The

routing protocol used in the network usually determines which interface is physically closest within the set of

anycast addresses and routes the packet along the shortest path to its destination.

There is no difference between anycast addresses and unicast addresses except for the subnet-router address.

For an anycast subnet-router address, the low-order bits, typically 64 or more, are zero. Anycast addresses are

taken from the unicast address space.

3. Multicast Addresses:

A multicast address identifies a set of interfaces that typically belong to different nodes. When a network

device sends a packet to a multicast address, the device broadcasts the packet to all interfaces identified by that

address. IPv6 does not support broadcast addresses, but instead uses multicast addresses in this role.

Multicast addresses support 16 different types of address scope, including node, link, site, organization, and

global scope. A 4-bit field in the prefix identifies the address scope.

The following types of multicast addresses can be used in an IPv6 subscriber access network:

• Solicited-node multicast address—Neighbor Solicitation (NS) messages are sent to this address.

• All-nodes multicast address—Router Advertisement (RA) messages are sent to this address.

• All-routers multicast address—Router Solicitation (RS) messages are sent to this address.

➢ Which addresses are generally used for a node?

1. Addresses of a Host:

2. Addresses of a Router:

Result :

Hence Study of IPV6 Addressing & Subnetting is completed sucessfully

Router(config-if)#ip nat inside

Router(config-if)#ip nat outside

Ex.No:12 IMPLEMENTATION OF NETWORK ADDRESS TRANSLATION

Date:

Aim:

To study and perform Network Address Translation (NAT) using cisco packet tracer.

Procedure:

1. Assign the following topology with respective IP addresses to pc, routers, servers and connection between

them.

2. Configure static NAT configuration

Since static NAT use manual translation, we have to map each inside local IP address (which needs a

translation) with inside global IP address. Following command is used to map the inside local IP address with

inside global IP address.

Router(config)#ip nat inside source static [inside local ip address] [inside global IP address]

And use the following commands to define inside and outside network connection for your local and global

IP addresses.

Static NAT configuration for Router0 connected with 3 pc’s:

Static NAT configuration for Router0 connected with server:

3. Configure the IP routing

IP routing is the process which allows router to route the packet between different networks.

IP routing on router0:

IP routing on router1:

4. Testing Static NAT Configuration

To test this setup click on any PC and Desktop and click Command Prompt.

• Run ipconfig command.

• Run ping 200.0.0.10 command.

• Run ping 192.168.1.10 command

First command verifies that we are testing from correct NAT device.

Second command checks whether we are able to access the remote device or not. A ping reply confirms that

we are able to connect with remote device on this IP address.

Third command checks whether we are able to access the remote device on its actual IP address or not. A ping

error confirms that we are not able to connect with remote device on this IP address.

Another way of testing is via browser:

We can also verify this translation on router with show ipnat translation command.

For router0:

For router1:

Result:

Henceforth, Network Address Translation (NAT) using cisco packet tracer implemented and verified.

Ex.No:13 IMPLEMENTATION OF VPN

Date:

AIM :

To configure VPN using routers in Cisco Packet Tracer.

PROCEDURE :

1 . Connect the devices as shown in the below figure.

2 . Initial IP configuration.

Device / Interface IP Address Connected with

PC0 / Fa0 192.168.1.2 /24 Router1 / Gig0/0

PC1 / Fa0 192.168.2.2 /24 Router2 / Gig0/0

Router1 / Se0/1/0 10.0.0.1 /8 Router 2 / Se0/1/0

Router2 / Se0/1/0 10.0.0.2 /8 Router 1 / Se0/1/0

Router2 / Se0/1/1 20.0.0.1 /8 Router3 / Se0/1/0

Router3 / Se0/1/0 20.0.0.2 /8 Router2 / Se0/1/1

Router>enable

Router#config t

Router(config)#int gig0/0

Router(config-if)#ip add 192.168.1.1 255.255.255.0

Router(config-if)#no shut

Router(config-if)#exit

Router(config)#int se0/1/0

Router(config-if)#ip address 10.0.0.1 255.0.0.0

Router(config-if)#no shut

3 .To assign IP address in Laptop click Laptop and click Desktop and IP configuration and

Select Static and set IP address as given in above table.

Following the same way, configure the IP address in PC1.

4. We have to assign ip address on each and every interface of router

CONFIGURATION ON ROUTER1:

CONFIGURATION ON ROUTER2:

Router>enable

Router#config t

Router(config)#int se0/1/0

Router(config-if)#ip add 10.0.0.2 255.0.0.0

Router(config-if)#no shut

Router(config-if)#exit

Router(config)#int se0/1/1

Router(config-if)#ip add 20.0.0.1 255.0.0.0

Router(config-if)#no shut

CONFIGURATION ON ROUTER3:

Router>enable

Router#config t

Router(config)#int se0/1/0

Router(config-if)#ip add 20.0.0.2 255.0.0.0

Router(config-if)#no shut

Router(config-if)#exit

Router(config)#int gig0/0

Router(config-if)#ip add 192.168.2.1 255.255.255.0

Router(config-if)#no shut

5. Now it's time to do routing. Here we have to configure default routing.

DEFAULT ROUTING CONFIGURATION ON ROUTER1:

Router>enable

Router#config t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#ip route 0.0.0.0 0.0.0.0 20.0.0.1

Router(config)#

Router#ping 10.0.0.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 10.0.0.1, timeout is 2 seconds:

!!!!!

DEFAULT ROUTING CONFIGURATION ON ROUTER3:

6. NOW CHECK THE CONNECTION BY PINGING EACH OTHER.

First we go to Router1 and ping with Router3:

Now we go to Router3 and test the network by pinging Router1 interface.

Router#ping 20.0.0.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 20.0.0.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 26/28/33 ms

Router>enable

Router#config t

Enter configuration commands, one per line. End with CNTL/Z.

Router(config)#ip route 0.0.0.0 0.0.0.0 10.0.0.2

Router(config)#

Router#config t

Router(config)#interface tunnel 200

Router(config-if)#ip address 172.18.1.1 255.255.0.0

Router(config-if)#tunnel source se0/1/0

Router(config-if)#tunnel destination 20.0.0.2

Router(config-if)#no shut

Router#config t

Router(config)#interface tunnel 400

Router(config-if)#ip address 172.18.1.2 255.255.0.0

Router(config-if)#tunnel source se0/1/0

Router(config-if)#tunnel destination 10.0.0.1

Router(config-if)#no shut

You can clearly see both routers pinging each other successfully.

7. NOW CREATE VPN TUNNEL between Router1 and Router3:

FIRST CREATE A VPN TUNNEL ON ROUTER1:

NOW CREATE A VPN TUNNEL ON ROUTER R3:

Success rate is 100 percent (5/5), round-trip min/avg/max = 25/28/32 ms

Router#ping 172.18.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.18.1.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 30/32/36 ms

Router#

Router#ping 172.18.1.1

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 172.18.1.1, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 33/45/83 ms

Router(config)#ip route 192.168.2.0 255.255.255.0 172.18.1.2

Router(config)#ip route 192.168.1.0 255.255.255.0 172.18.1.1

Router#show interfaces Tunnel 200

Tunnel200 is up, line protocol is up (connected)

Hardware is Tunnel

Internet address is 172.18.1.1/16

8. Now test communication between these two routers again by pinging each other:

Router1

Router2

9. Now do routing for created VPN Tunnel on Both Router1 and Router3:

10. TEST VPN TUNNEL CONFIGURATION:

Now we have to test whether tunnel is created or not for Router1

MTU 17916 bytes, BW 100 Kbit/sec, DLY 50000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation TUNNEL, loopback not set

Keepalive not set

Tunnel source 10.0.0.1 (FastEthernet0/1), destination 20.0.0.2

Tunnel protocol/transport GRE/IP

Key disabled, sequencing disabled

Checksumming of packets disabled

Tunnel TTL 255

Fast tunneling enabled

Tunnel transport MTU 1476 bytes

Tunnel transmit bandwidth 8000 (kbps)

Tunnel receive bandwidth 8000 (kbps)

Last input never, output never, output hang never

Last clearing of "show interface" counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 1

Queueing strategy: fifo

Output queue: 0/0 (size/max)

5 minute input rate 32 bits/sec, 0 packets/sec

5 minute output rate 32 bits/sec, 0 packets/sec

52 packets input, 3508 bytes, 0 no buffer

Received 0 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 input packets with dribble condition detected

52 packets output, 3424 bytes, 0 underruns

0 output errors, 0 collisions, 0 interface resets

0 unknown protocol drops

0 output buffer failures, 0 output buffers swapped out

Now going to Router3 and test VPN Tunnel Creation:

Router #show interface Tunnel 400

Tunnel400 is up, line protocol is up (connected)

Hardware is Tunnel

Internet address is 172.18.1.2/16

MTU 17916 bytes, BW 100 Kbit/sec, DLY 50000 usec,

reliability 255/255, txload 1/255, rxload 1/255

Encapsulation TUNNEL, loopback not set

Keepalive not set

Tunnel source 20.0.0.2 (FastEthernet0/0), destination 10.0.0.1

Tunnel protocol/transport GRE/IP

Key disabled, sequencing disabled

Checksumming of packets disabled

Tunnel TTL 255

Fast tunneling enabled

Tunnel transport MTU 1476 bytes

Tunnel transmit bandwidth 8000 (kbps)

Tunnel receive bandwidth 8000 (kbps)

Last input never, output never, output hang never

Last clearing of "show interface" counters never

Input queue: 0/75/0/0 (size/max/drops/flushes); Total output drops: 1

Queueing strategy: fifo

Output queue: 0/0 (size/max)

5 minute input rate 32 bits/sec, 0 packets/sec

11. Trace the VPN tunnel path.

5 minute output rate 32 bits/sec, 0 packets/sec

52 packets input, 3424 bytes, 0 no buffer

Received 0 broadcasts, 0 runts, 0 giants, 0 throttles

0 input errors, 0 CRC, 0 frame, 0 overrun, 0 ignored, 0 abort

0 input packets with dribble condition detected

53 packets output, 3536 bytes, 0 underruns

0 output errors, 0 collisions, 0 interface resets

0 unknown protocol drops

RESULT:

Hence successfully, configured VPN using routers in Cisco Packet Tracer.

Ex.No:14 COMMUNICATION USING HDLC

Date:

AIM:

To configure HDLC Protocol using routers in Cisco Packet Tracer.

PROCEDURE:

1. Connect the devices as shown in the below figure.

2 . Initial IP configuration.

Device / Interface IP Address Connected with

PC0 / Fa0 10.0.0.2 /8 Router0 / Fa0/0

PC1 / Fa0 20.0.0.2 /8 Router1 / Fa0/0

Router0 / Se0/3/0 192.168.1.2 /30 Router1 / Se0/3/0

Router1 / Se0/3/0 192.168.1.3 /30 Router0 / Se0/3/0

3 . Use the connected laptops to find the DCE and DTE routers

4. Configure the routers with the following parameters

Router0 being the DCE, clock rate has to be configured on Router0 serial 0/3/0 interface.

5. Then, configure HDLC encapsulation and IP address on Router0 serial 0/3/0 interface. The encapsulation

hdlc configures HDLC protocol on the serial interface. Router0 being the DCE side of the serial link, the

192.168.1.3 /30 IP address is configured on Router0 serial 0/3/0 interface. Don't forget to enable the interface

with a no shutdown command.

6. The show interfaces serial 0/3/0 confirms that HDLC encapsulation is enabled on the interface

: Encapsulation HDLC, loopback not set, keepalive set (10 sec)

7. Finally, configure HDLC encapsulation and IP address on Router1 serial 0/3/0 interface. The link comes up

as both routers are correctly configured.

Router#ping 192.168.1.2

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 192.168.1.2, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 25/28/32 ms

8. NOW CHECK THE CONNECTION BY PINGING EACH OTHER.

First we go to Router0 and ping with Router1:

Now we go to Router1 and test the network by pinging the Router0 interface.

Router#ping 192.168.1.6

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 198.168.1.6, timeout is 2 seconds:

!!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 26/28/33 ms

RESULT :

Hence successfully, configured HDLC Protocol using routers in Cisco Packet Tracer.

Ex.No:15 COMMUNICATION USING HDLC

Date:

AIM:

To configure PPP using routers in Cisco Packet Tracer.

PROCEDURE:

1 . Connect the devices as shown in the below figure.

2 . Initial IP configuration.

Device / Interface IP Address Connected with

PC0 / Fa0 10.0.0.2 /8 Router0 / Fa0/0

PC1 / Fa0 20.0.0.2 /8 Router1 / Fa0/0

Router0 / Se0/3/0 192.168.1.2 /30 Router1 / Se0/3/0

Router1 / Se0/3/0 192.168.1.3 /30 Router0 / Se0/3/0

3 . Use the connected laptops to find the DCE and DTE routers

4. Configure the routers with the following parameters

Router0 being the DCE, clock rate has to be configured on Router0 serial 0/3/0 interface.

5. Then, configure PPP encapsulation and IP address on Router0 serial 0/3/0 interface. The encapsulation

ppp configures PPP protocol on the serial interface. Router0 being the DCE side of the serial link, the

192.168.1.3 /30 IP address is configured on Router0 serial 0/3/0 interface. Don't forget to enable the interface

with a no shutdown command.

6. The show interfaces serial 0/3/0 confirms that PPP encapsulation is enabled on the interface : Encapsulation

PPP, loopback not set, keepalive set (10 sec)

7. Finally, configure PPP encapsulation and IP address on Router1 serial 0/3/0 interface. The link comes up as

both routers are correctly configured.

8. NOW CHECK THE CONNECTION BY PINGING EACH OTHER.First we go to Router0 and ping with

Router1:

Now we go to Router1 and test the network by pinging the Router0 interface.

RESULT:

Hence successfully, configured PPP using routers in Cisco Packet Tracer.

1 | P a g e

AMEY ONLINE CHESS GAME

A COURSE PROJECT REPORT

By

Mohammad Basheeruddin (RA2011031010001)

Anas Ahmed Ather (RA2011031010006)

Prithivi Singh Kirar(RA2011031010023)

Vanshaj Bhradwaj (RA2011031010026)

Under the guidance of
Ms.S.Thenmalar

In partial fulfilment for the Course

of

18CSC302J - COMPUTER NETWORKS

in Computer Science Engineering Specialization in IT

FACULTY OF ENGINEERING AND TECHNOLOGY SRM INSTITUTE OF SCIENCE AND
TECHNOLOGY

Kattankulathur, Chenpalpattu District

NOVEMBER 2022

1

1

1 | P a g e

SRM INSTITUTE OF SCIENCE AND TECHNOLOGY

(Under Section 3 of UGC Act, 1956)

BONAFIDE CERTIFICATE

Certified that this mini project report "Online Chess Game" is the bonafide work of
Mohammad Basheeruddin (RA2011031010001), Anas Ahmed Ather
(RA2011031010006), Prithivi Singh Kirar(RA2011031010023), Vanshaj Bhradwaj
(RA2011031010026) who carried out the project work under my supervision.

SIGNATURE

Ms.S.Thenmalar

Professor

NWC

SRM Institute of Science and Technology

1

2

2 | P a g e

1. ABSTRACT

We proposed to build an online chess game for single-player as well as multiplayer in
nodejs and deploy it on Heroku. An online chess game is developed in compliance with
Human-Machine Interaction principles. The web app has a simple and attractive design.
The theme of the game can also be customised by the player. The chessboard's background
may be changed to suit the user's preferences. Users can play against other players in
multiplayer mode, which features a chatbox for real-time conversation between players.
Aside from that, chosen blocks will be highlighted for easier sight, and a sound will be
heard after each move to confirm the move. While playing, the user learns about the
potential movement of the pieces. The browser will notify you if an opponent leaves the
game in the middle of a round in multiple player mode.

1

3

3 | P a g e

ACKNOWLEDGEMENT

We express our heartfelt thanks to our honorable Vice Chancellor Dr. C.

MUTHAMIZHCHELVAN, for being the beacon in all our endeavors.

We would like to express my warmth of gratitude to our Registrar Dr.

S. Ponnusamy, for his encouragement

We express our profound gratitude to our Dean (College of Engineering

and Technology) Dr. T. V.Gopal, for bringing out novelty in all executions.

We would like to express my heartfelt thanks to Chairperson, School of

Computing Dr. Revathi Venkataraman, for imparting confidence to complete my

course project

We wish to express my sincere thanks to Course Audit Professor

Dr.Annapurani Panaiyappan, Professor and Head, Department of Networking

and Communications and Course Coordinators for their constant encouragement

and support.

We are highly thankful to our my Course project Faculty

Ms.S.Thenmalar, professor , NWC, for his/her assistance, timely suggestion and

guidance throughout the duration of this course project.

We extend my gratitude to our HoD Dr. Annapurani Panaiyappan .K
 Professor & HOD, NWC and my Departmental colleagues for their

Support.

Finally, we thank our parents and friends near and dear ones who directly

and indirectly contributed to the successful completion of our project. Above all, I

thank the almighty for showering his blessings on me to complete my Course project.

1

4

4 | P a g e

TABLE OF CONTENTS

CHAPTERS CONTENTS PAGE NO.

1. ABSTRACT

2. INTRODUCTION

3. REQUIREMENT ANALYSIS

4. IMPLEMENTATION

5. EXPERIMENT RESULTS & ANALYSIS

5.1. RESULTS

5.2. RESULT ANALYSIS

6. CONCLUSION & FUTURE ENHANCEMENT

7. REFERENCE

1

5

5 | P a g e

2. INTRODUCTION

2.1 Aim of the project

The project “Online Chess Game” implements a classic version of Chess with a Graphical User
Interface (GUI). The Chess game follows the basic rules of chess, and all the chess pieces only
move according to valid moves for that piece. It is played on an 8x8 checkerboard, with a dark
square in each player's lower-left corner. The website was developed using Nodejs and
deployed on Heroku. This is an online chess game that users from remote locations can play
and discuss on the website through the chat window. The user can play in single mode and
multiplayer mode as well. There is also an option to change the layout of the chessboard as the
player would like. While playing, the player gets to know about his current position and the
other position in which he can move his pieces.

2.2 What is a chess game

Chess is a game for 2 players each of whom moves 16 pieces according to fixed rules across a
checkerboard and tries to checkmate the opponent's king. Our project implements the chess
game with a graphical user interface. The chess game follows the basic rules of chess and all
the chess pieces only move according to valid moves for that piece.

2.3 What Are The Chess Pieces

The chess pieces are what you move on a chessboard when playing a game of chess. There are
six different types of chess pieces. Each side starts with 16 pieces: eight pawns, two bishops,
two knights, two rooks, one queen, and one king.

The Pawn

When a game begins, each side starts with eight pawns. White's pawns are located in the
second rank, while Black's pawns are located in the seventh rank. The pawn is the least
powerful piece and is worth one point. If it is a pawn's first move, it can move forward one or
two squares. If a pawn has already moved, then it can move forward just one square at a time.
It attacks (or captures) each square diagonally to the left or right. In the following diagram, the
pawn has just moved from the e2-square to the e4-square and attacks the squares d5 and f5.

The Bishop

Each side starts with two bishops, one on a light square and one on a dark square. When a game
begins, White's bishops are located on c1 and f1, while Black's bishops are located on c8 and
f8. The bishop is considered a minor piece (like a knight) and is worth three points. A bishop
can move diagonally as many squares as it likes, as long as it is not blocked by its own pieces
or an occupied square. An easy way to remember how a bishop can move is that it moves like
an "X" shape. It can capture an enemy piece by moving to the occupied square where the piece
is located.

1

6

6 | P a g e

The Knight

Each side starts with two knights—a king's knight and a queen's knight. When a game starts,
White's knights are located on b1 and g1, while Black's knights are located on b8 and g8. The
knight is considered a minor piece (like a bishop) and is worth three points. The knight is the
only piece in chess that can jump over another piece! It moves one square left or right
horizontally and then two squares up or down vertically, OR it moves two squares left or right
horizontally and then one square up or down vertically—in other words, the knight moves in
an "L-shape." The knight can capture only what it lands on, not what it jumps over!

The Rook

Each side starts with two rooks, one on the queenside and one on the kingside. All four rooks
are located in the corners of the board. White's rooks start the game on a1 and h1, while Black's
rooks are located on a8 and h8. The rook is considered a major piece (like the queen) and is
worth five points. It can move as many squares as it likes left or right horizontally, or as many
squares as it likes up or down vertically (as long as it isn't blocked by other pieces).

The Queen

The queen is the most powerful chess piece! When a game begins, each side starts with one
queen. The white queen is located on d1, while the black queen is located on d8. The queen is
considered a major piece (like a rook) and is worth nine points. It can move as many squares
as it likes left or right horizontally, or as many squares as it likes up or down vertically (like a
rook). The queen can also move as many squares as it likes diagonally (like a bishop).

The King

The king is the most important chess piece. The goal of a game of chess is to checkmate the
king. When a game starts, each side has one king. White's king is located on e1, while Black's
king starts on e8.

2.4 PROBLEM STATEMENT

 Chess is a game where the battle of minds takes place between two people. It is a game of
strategy where two people play with each other’s minds. It’s a board game that requires
patience, concentration, intuition, perseverance, etc. Chess is a mind game that involves a lot
of thinking and time. It requires prediction and problem-solving skills. We are living in a world
that is connected despite being in different locations. So we have the ability to play and
challenge other people with games. The project focuses on a chess game that anyone can play
online with someone or by themselves. The main goal is to allow the gamer to have a good
experience of the play but also connect with the opponent player and learn and discuss chess
moves.

1

7

7 | P a g e

3. REQUIREMENTS

HMI principles implemented in the project

Place Users at the Centre

As always, the first UI design principle is to focus on people (or, the “user” as we all say). A good
user interface is easy and natural to use, avoids confusing the user, and does what the user
needs. Learning about human-centred design will help you achieve the right mindset for the
best interfaces and focus on people first, and design second.

Strive for Clarity

The purpose of the user interface is to allow the user to interact with the website or application
(or, more generally in broader design, any product). Avoid anything that confuses people or
doesn’t help them interact.

Minimise Actions and Steps Per Screen

Streamline tasks and actions so they can be done in as few steps as possible. Each screen should
have one primary focus. Keep the primary action front and centre and move secondary actions
deeper on a page or give them lighter visual weight and the right typography.

Aim for Simplicity

Classics exist for a reason; they’re timeless and never go out of style, though they do benefit
from modern touches. A user interface should be simple and elegant.

Be Consistent

Consistency creates familiarity, and familiar interfaces are naturally more usable. Consistent
design reduces friction for the user. A consistent design is predictable. Predictable design
means it’s easy to understand how to use functions without instruction. Not only should UI
design be consisten

1

8

8 | P a g e

internally, but externally as well. A design system is a great way to ensure consistency in UI
design.

Your Goal: Make Your User Interface Design Invisible

Don’t draw attention to your user interface. A great UI allows people to use the product without
friction, not spend time figuring out how to interact with the product.

Provide Useful Feedback

Feedback can be visual, audio (the ding of a new message alert), or sense of touch. Every action
should have feedback to indicate whether the action was successful or not.

Feedback helps to answer questions in four areas:

Location: You are here.

Status: What’s going on Is it still going on

Future status: What’s next

Outcomes & Results: Hey, what happened.

Hovering over a navigation item that then changes colour indicates an item is clickable. Buttons
should look like buttons. Feedback lets the user know if they’re doing the right thing (or the
wrong thing).

Reduce Cognitive Load

Many of these UI design principles serve to reduce cognitive load for users.

Basically, don’t make users think (also a useful UX design principle as well).

Make It Accessible

UI designs need to take into account accessibility issues. Online, this often means ensuring the
visibly impaired can access and use the product.

Flexible

Create a UI that will work and look great across multiple platforms. It may have to be tweaked
depending on the form factor of a device and its

1

9

9 | P a g e

operating system (Android and iOS, for example), but it should be flexible enough to work
on anything.

Visual Structure

Keep a consistent visual structure to create familiarity and relieve user anxiety by making them
feel at home. A few elements to focus on include a visual hierarchy with the most important
things made obvious, colour scheme, consistent navigation, re-use elements, and creating a
visual order using grids.

Dialogues Should Result in Closure

Actions should have a beginning, middle, and end (with feedback at each step). For example,
when making an online purchase we move from browsing and product selection to the checkout
and then finally confirmed that the purchase is completed.

Provide a Clear Next Step

Include a clear next step a user can take after an interaction. That could be as simple as a “back to
top” click at the end of a long blog post or a pointer to more information. Help the user achieve
their goals with the next step.

NodeJs

Node.js is an open-source and cross-platform JavaScript runtime environment. It is a popular
tool for almost any kind of project!

Node.js runs the V8 JavaScript engine, the core of Google Chrome, outside of the browser. This
allows Node.js to be very performant.

A Node.js app runs in a single process, without creating a new thread for every request. Node.js
provides a set of asynchronous I/O primitives in its standard library that prevent JavaScript
code from blocking and generally, libraries in Node.js are written using non-blocking
paradigms, making blocking behaviour the exception rather than the norm.

When Node.js performs an I/O operation, like reading from the network, accessing a database
or the filesystem, instead of blocking the thread and

1

10

10 | P a g e

wasting CPU cycles waiting, Node.js will resume the operations when the response comes back.

This allows Node.js to handle thousands of concurrent connections with a single server without
introducing the burden of managing thread concurrency, which could be a significant source of
bugs.

Node.js has a unique advantage because millions of frontend developers that write JavaScript
for the browser are now able to write the server-side code in addition to the client-side code
without the need to learn a completely different language.

In Node.js the new ECMAScript standards can be used without problems, as you don't have to
wait for all your users to update their browsers - you are in charge of deciding which
ECMAScript version to use by changing the Node.js version, and you can also enable specific
experimental features by running Node.js with flags.

Socket Programming

A socket is a communication connection point (endpoint) that you can name and address in a
network. Socket programming shows how to use socket APIs to establish communication
links between remote and local processes.

The processes that use a socket can reside on the same system or different systems on different
networks. Sockets are useful for both stand-alone and network applications. Sockets allow you
to exchange information between processes on the same machine or across a network,
distribute work to the most e cient machine, and they easily allow access to centralised data.
Socket application program interfaces (APIs) are the network standard for TCP/IP. A wide
range of operating systems support socket APIs. i5/OS sockets support multiple transports and
networking protocols. Socket system functions and the socket network functions are thread-
safe.

2

11

11 | P a g e

Figure 2: Socket Programming with Nodejs

Heroku

The project is hosted on Heroku which is a cloud Platform as a container-based Service (PaaS).
Heroku is used by developers to launch, manage, and grow contemporary programs. Heroku is
an open-source software platform for machine learning and data science that makes it simple
to develop and publish attractive, bespoke web apps. The benefit of web apps is that they are
platform agnostic and may be operated by anybody with an Internet connection. Their code is
run on a back-end server, which processes incoming requests and answers using a common
protocol that all browsers can understand.

Deployment:

Install dependencies of node js using packages.json

Build and run the app locally using the command heroku local web

Create git and commit the changes

Deploy application on Heroku using CLI

To open the app, type heroku open.

2

12

12 | P a g e

4. IMPLEMENTATION

App.js

const formEl = document.querySelectorAll('#joinForm > div > input') const joinButtonEl =
document.querySelector('#joinButton')

const messageEl = document.querySelector('#message') const statusEl =
document.querySelector('#status') const ChatEl = document.querySelector('#chat')

const sendButtonEl = document.querySelector('#send') const roomsListEl =
document.getElementById('roomsList'); const myAudioEl =
document.getElementById('myAudio');

const singlePlayerEl = document.getElementById('singlePlayer'); const multiPlayerEl =
document.getElementById('multiPlayer'); const totalRoomsEl =
document.getElementById('rooms')

const totalPlayersEl = document.getElementById('players') const chatContentEl =
document.getElementById('chatContent') var config = {};

var board = null;

var game = new Chess() var turnt = 0;

// initializing semantic UI dropdown

$('.ui.dropdown')

.dropdown();

// function for defining onchange on dropdown menus

$("#roomDropdown").dropdown({ onChange: function (val) {

console.log(val) console.log('running the function') formEl[1].value = val

}

});

2

13

13 | P a g e

function onDragStart2(source, piece, position, orientation) {

// do not pick up pieces if the game is over if (game.game_over()) {

if (game.in_draw()) {

alert('Game Draw!!');

}

else if (game.in_checkmate()) if (turnt === 1) {

alert('You won the game!!');

} else {

alert('You lost!!');

}

return false

}

// only pick up pieces for White

if (piece.search(/^b/) !== -1) return false

}

function makeRandomMove() {

var possibleMoves = game.moves()

// game over

if (possibleMoves.length === 0) { return;

}

var randomIdx = Math.floor(Math.random() * possibleMoves.length)
game.move(possibleMoves[randomIdx]);

myAudioEl.play(); turnt = 1 - turnt;

board.position(game.fen());

2

15

15 | P a g e

function onDrop2(source, target) {

// see if the move is legal var move = game.move({

from: source, to: target,

promotion: 'q' // NOTE: always promote to a queen for example simplicity

})

myAudioEl.play();

// illegal move

if (move === null) return 'snapback' turnt = 1 - turnt;

// make random legal move for black window.setTimeout(makeRandomMove, 250)

}

// update the board position after the piece snap

// for castling, en passant, pawn promotion function onSnapEnd2() {

board.position(game.fen())

}

singlePlayerEl.addEventListener('click', (e) => { e.preventDefault();
document.getElementById('gameMode').style.display = "none";
document.querySelector('#chessGame').style.display = null; config = {

draggable: true, position: 'start',

onDragStart: onDragStart2, onDrop: onDrop2, onSnapEnd: onSnapEnd2

}

board = Chessboard('myBoard', config);

})

2

16

16 | P a g e

//Connection will be established after webpage is refreshed const socket = io()

//Triggers after a piece is dropped on the board function onDrop(source, target) {

//emits event after piece is dropped var room = formEl[1].value; myAudioEl.play();

socket.emit('Dropped', { source, target, room })

}

//Update Status Event

socket.on('updateEvent', ({ status, fen, pgn }) => { statusEl.textContent = status
fenEl.textContent = fen

pgnEl.textContent = pgn

})

socket.on('printing', (fen) => { console.log(fen)

})

//Catch Display event

socket.on('DisplayBoard', (fenString, userId, pgn) => { console.log(fenString)

//This is to be done initially only if (userId != undefined) {

messageEl.textContent = 'Match Started!! Best of Luck...' if (socket.id == userId) {

config.orientation = 'black'

}

document.getElementById('joinFormDiv').style.display = "none";
document.querySelector('#chessGame').style.display = null ChatEl.style.display = null
document.getElementById('statusPGN').style.display = null

}

2

17

17 | P a g e

config.position = fenString

board = ChessBoard('myBoard', config) document.getElementById('pgn').textContent = pgn

})

//To turn off dragging socket.on('Dragging', id => {

if (socket.id != id) { config.draggable = true;

} else {

config.draggable = false;

}

})

//To Update Status Element socket.on('updateStatus', (turn) => {

if (board.orientation().includes(turn)) { statusEl.textContent = "Your turn"

}

else {

statusEl.textContent = "Opponent's turn"

}

})

//If in check socket.on('inCheck', turn => {

if (board.orientation().includes(turn)) { statusEl.textContent = "You are in Check!!"

}

else {

statusEl.textContent = "Opponent is in Check!!"

}

})

//If win or draw socket.on('gameOver', (turn, win) => {

config.draggable = false;

3

18

18 | P a g e

if (win) {

if (board.orientation().includes(turn)) { statusEl.textContent = "You lost, better luck next time
:)"

}

else {

statusEl.textContent = "Congratulations, you won!!"

}

}

else {

statusEl.value = 'Game Draw'

}

})

3

19

19 | P a g e

5. RESULTS AND ANALYSIS

Web Application: https://onlinechess-game.herokuapp.com

Home Page

Single Player Mode

https://onlinechess-game.herokuapp.com/

3

20

20 | P a g e

Multiplayer Mode

3

21

21 | P a g e

3

22

22 | P a g e

Chat window for players to send message to each other

3

23

23 | P a g e

Different Colour Themes:

Grey

Orange

24 | P a g e

24 | P a g e

Green

Blue

25 | P a g e

25 | P a g e

6. CONCLUSION AND FUTURE ENHANCEMENT

Through the proposed system, we can draw the conclusion that the online chess game
is designed by keeping in mind the Human-Machine Interaction principles. The web
application is simple and allows the user to play chess. Two modes are available: the
first one is single-player and the second one is multiplayer. In the case of multiplayer,
the user can communicate with the opponent through a chat window. The design of the
website is classic and elegant with fewer colours and objects on it and the goal is very
clear to the user: playing chess. The user has the choice to change the theme of the game
as well. While playing, the user gets to know about the possible movement of the pieces.
For multiple player mode, if the opponent leaves the game in the middle, the browser
notifies that the opponent has left the game. The user is well informed of everything
that is happening and can take decisions without thinking too much.

The web application developed using Nodejs was deployed on the Heroku platform and
can be accessed by everyone. Furthermore, for future work, we can add more features
and also make a tutorial portal for new beginners with tips on how to play.

26 | P a g e

26 | P a g e

7. REFERENCES AND ROLE OF EACH PERSON

https://www.chess.com/terms/chess-pieces

https://nodejs.org/en/docs

https://devcenter.heroku.com/categories/reference

https://devcenter.heroku.com/articles/getting-started-with-nodejs

1. Mohammed Basheeruddin – UI/UX

2. Anas Ahmed Ather - HTML

3. Vanshaj Bhardwaj - CSS

4. Prithvi Singh Kirar - Backend

https://www.chess.com/terms/chess-pieces
https://nodejs.org/en/docs/
https://devcenter.heroku.com/categories/reference
https://devcenter.heroku.com/articles/getting-started-with-nodejs

